

Challenges and Solutions to
Implementing the TM Forum Shared
Information /Data Model

Using the SID in OSS/BSS
Integration

Table of Contents

Why Use the TM Forum’s SID?.. 3
A Triple Play Implementation Example ... 5
Complex Data Mapping Between the SID and Other Systems.. 6
Model-Based Data Consistency Based on Business Rules...10
Model-Based Semantic Data Routing ..11
Model-Based Error Management to Handle Inaccurate Input ..12
Impact Analysis to Manage Change...14
Conclusions ...15

Table of Figures

Figure 1: Abstraction Enables Information Sharing .. 4
Figure 2: Graphical Tools Provide Interaction With The Sid... 5
Figure 3: A Triple Play Implementation’s Processing ... 6
Figure 4: Properties Of The SID’s Customer Class ... 8
Figure 5: An Example Of How A Computed Attribute Might Get Its Value .. 9
Figure 6: Mapping From The SID To A Data Source.. 9
Figure 7: Defining A Business Validation Rule ..11
Figure 8: Model-Based Semantic Data Routing ..12
Figure 9: Model-Based Error Management..13
Figure 10: RulesResults Contains The Error Messages...14
Figure 11: A Summary Of The Impact Of Changing customerName...14
Figure 12: Some Details Of An Impact Analysis ...15

Using the SID in OSS/BSS Integration

Page 2 of 16
2

Introduction
With the Shared Information/Data (SID) model, the TeleManagement
Forum (TM Forum) has developed a common language for enterprise
operations in the telecommunications industry. The TM Forum added XML
Schema Definition (XSD) representations to the original Unified Modeling
Language (UML) definitions for the SID model. The SID XSDs are an
important advance, providing the basis for developing reusable data
models for integrated business applications. Through Progress®
DataXtend™ Semantic Integrator, Progress® Software provides key
support for building robust integrations that gain the value of the SID as
a common data model to promote speed, agility, reuse, and data quality
in integration projects for operational and business support systems
(OSS/BSS).

The tools that help you use the SID to implement OSS integration must
easily mediate between the SID and other systems. The tools must
provide:

• Complex data mapping and transformation

• Data consistency and validation

• Content-based data routing (semantic mediation)

• Input error management (remediation)

• Impact analysis of changes

This paper elaborates on these requirements for using the SID model
within OSS/BSS integration projects and discusses the role of DataXtend
Semantic Integrator (SI) in solving them.

Why Use the TM Forum’s SID?
The Shared Information/Data (SID) model is an abstract common model that is a
central component of the TM Forum’s Next Generation Operations Systems and
Software (NGOSS) initiative. The goal of NGOSS is to promote open,
distributed OSS/BSS systems using commercial off-the-shelf technology.
NGOSS provides a technology-neutral architectural framework for cooperation
among component applications interfaces within larger system integration
projects.

Using the SID in OSS/BSS Integration

Page 3 of 16
3

Loosely-coupled systems require data abstraction, which the SID provides as an
industry standard model. Reuse requires that the standard model also be abstract
to enable different parts of a business to share data. The SID is considered the
telecommunications industry’s standard abstract common model to use for
integration. Figure 1 illustrates the advantages of an abstract common model.

≠

Party
partyId
val idFor : TimePeriod

Individual
gender
placeOfBi rth
national i ty
mari talStatus
ski l ls
disabi l i ties
al iveDuring : TimePeriod

Organization
isLegal Enti ty
exist sDuring : TimePeriod
type

 Retail Customer Definition Wholesale Customer Definition

SID Abstract Common Model

Figure 1: Abstraction Enables Information Sharing

A company’s retail division and its wholesale division have different definitions
of what a customer is. A retail division has a simple definition of customer,
whereas the wholesale customer might include many other attributes such as
VAT identifiers, among other things. The SID provides the Party abstraction,
which allows individual customers and organizational customers to both be
represented, enabling both divisions to share the same information and
information model.

Comprising about 1,000 classes, the SID model ranges from very general
concepts like the OpenGIS geometrical elements of points, curves, and surfaces
to very specific concepts like the wide-area network (WAN) protocols PPP and
X25. Although the SID may at first seem daunting, rapid acceptance of the SID
for system integration will occur when you use implementation tools that easily
navigate, display, and interact with the SID.

Using the SID in OSS/BSS Integration

Page 4 of 16
4

Figure 2 indicates how DataXtend SI’s tools can dynamically navigate and
integrate graphically with all aspects of the SID, from the packages, classes, and
relationships, to the attributes and rules on the classes.

Figure 2: Graphical Tools Provide Interaction with the SID

A Triple Play Implementation Example
The examples in this paper come from a Triple Play implementation that
provides the services for customers to order three key products:

⇒ Voice, using Voice Over Internet Protocol (VOIP)

⇒ Video, using the Internet Protocol Television (IPTV) protocol

⇒ Data, using high-speed Internet (broadband)

This Triple Play implementation uses the SID as the common model between a
set of application interfaces from various vendors. Over a dozen application
interfaces with a total of nearly 100 operations span functionality that includes

Using the SID in OSS/BSS Integration

Page 5 of 16
5

inventory, service assurance, customer relationship management (CRM)
activation, product pricing, and order management.

Data Source
API

Data Source
API

SID Common Model

.

.

. .
.
.

XML

DataXtend SI
 Metadata

Validate
Transform

Route

processOrder
assignResource

resourceAssign

createSubscriber

orderComplete

More processing
to complete order

Service API

Service API

Service API

Data Source
API

1
2

3

4

5
XML

XML

XML

XML

XML

Figure 3: A Triple Play Implementation’s Processing

The implementation runs over an ESB application server infrastructure. Most of
the application programming interfaces (APIs) are Web services from a variety
of vendors. During processing of an order, the Web service APIs pass messages
in the form of XML documents that represent aspects of a triple play order. The
SID common model is the intervening data model between all the application
interfaces. DataXtend SI tools provide the data and operations for validating,
transforming, and routing the XML document messages throughout the system
and between the various vendor APIs.

Complex OSS/BSS systems such as this one with many loosely-coupled
interfaces need the abstraction of the SID to provide for rapid and flexible data
integration. The rest of this paper elaborates on what the implementation tools
need to provide to make this integration happen.

Complex Data Mapping Between the SID and Other
Systems
The SID is organized from a very general perspective because it’s an abstract
model. Data services and sources, however, often contain “flat” data structures
because they typically represent APIs of systems that are older and more
narrowly defined. This discrepancy sometimes requires some complex mapping
between these relatively simple external data structures and the more abstract
SID details.

Using the SID in OSS/BSS Integration

Page 6 of 16
6

You will likely find that the SID does not have all the attributes where you want
them as you map attribute to attribute for an implementation. Customized
attributes can be created that do not exist in the SID but are needed by specific
data services or sources. As you create a customized attribute, you can also
associate an expression with it to automate the attribute’s data conversion at
runtime.

It is important for implementation tools to provide customization without
changing the common model itself, so that the model can remain a standard and
be easily upgraded when a new version is published. DataXtend SI tools store all
customized information as metadata separate from the SID model so the SID is
unchanged.

Some features of the SID that should be customizable without directly
modifying the SID itself include:

⇒ subclasses

⇒ simple attributes

⇒ computed attributes

⇒ rules

For example, suppose you need a customer name in a format not provided by the
SID. The following figure shows a DataXtend SI tool display of the properties
of the SID’s Customer class.

Using the SID in OSS/BSS Integration

Page 7 of 16
7

Figure 4: Properties of the SID’s Customer Class

Notice that the Customer class does not have a customer name property. You
can add a computed attribute, such as customerName, that computes the name
at runtime. For example, a computed attribute’s value could be assigned a value
from some other attribute in a different class of the SID.

A customer’s name might be an organization or an individual. Tools such as
DataXtend’s Expression Builder can create an expression that computes the
attribute’s value at runtime. Such an expression might be described as follows:

If the customer ordering a service has its party role as an organization,

then the customerName evaluates to the tradingName, which is a simple
attribute of the SID’s OrganizationName class.

Otherwise, the customerName evaluates to the fullName, which is an
attribute of the SID’s IndividualName class. (In this case, fullName is
a computed attribute that concatenates simple attributes representing
parts of a person’s name.)

Using the SID in OSS/BSS Integration

Page 8 of 16
8

The following schema diagram illustrates from where the computed attribute
customerName gets its value.

If party’s role
is as an
organization

Then use
tradingName from
OrganizationalName

Else use fullName
from IndividualName

Figure 5: An Example of How a Computed Attribute Might Get its Value

The implementation tools need to be able to easily navigate the complexities of
the SID common model, and the data models of the other application interfaces.
The mappings need to be easy to graphically create and modify. The following
figure shows an example of how DataXtend SI’s tool maps the customerName
computed attribute from the SID’s Customer class to the Name attribute in a
data source’s SubscriberInfo class.

Figure 6: Mapping from the SID to a Data Source

Note also that the gray arrows in Figure 6 indicate how the implementation tool
is used to make all simple and complex data links required by the
implementation.

Using the SID in OSS/BSS Integration

Page 9 of 16
9

Model-Based Data Consistency Based on Business
Rules
Any useful implementation tool must provide a mechanism for applying
business validation rules to the data in order to keep the data consistent between
applications. For example, a business validation rule for a Triple Play
implementation might be:

A subscriber of voice over IP (VOIP) must also subscribe to Internet broadband
service.

This kind of business logic contains the following characteristics:

1. These are rules that cannot be enforced in XML alone. While XML does an
excellent job of ensuring the format integrity of the message (field lengths,
numeric versus alpha-numeric and so on), XML cannot ensure inter-field
dependencies or conditions like this VOIP example.

2. These rules are often obvious to the business yet are not consistently
defined or implemented across multiple integration projects and can cause
significant data quality or operational issues. Typically, these rules are
written in procedural code all over the architecture — in the adapters, or on
the bus.

3. These rules are too simple to warrant the use of business rules engines,
which can perform very complex rules processing but at a heavy expense in
terms of performance and training.

We call these rules validation or semantic rules as opposed to “business rules.”
Business rules managed by business rules engines are typically associated with
performing calculations such as tax or pricing computations.

Implementation tools should be able to easily define any rule like this without
having to do any coding. See the following figure.

Using the SID in OSS/BSS Integration

Page 10 of 16
10

Figure 7: Defining a Business Validation Rule

In this example, DataXtend’s Expression Builder is used to create the following
rule for the ServiceOrder class.

VIOP must also subscribe to DATA

The rule checks to see if both Boolean attributes isVIOP and isDATA are true,
and if so, the rule evaluates to true.

Model-Based Semantic Data Routing
Good implementation tools are able to map any data item to a SID data item,
without requiring any custom coding. Also, by using computed attributes as
shown in the previous section, automatic data transformation can be achieved.

However, the implementation tools should also be able to do semantic routing
by defining rules that can analyze the data at runtime and automatically
determine and formulate the correct message interface for the ESB to route it to
the physical system. Semantic routing is a distinct but necessary routing
compared to message bus routing, which occurs after the application interface
message has been created and where the ESB routes the messages to the
physical system endpoints.

DataXtend SI’s Expression Builder can manage transformation and routing
based on the message content, and map preconditions defined in the SID without
requiring low-level code. With DataXtend SI, conditional logic for data routing
and transformation is defined once on the model and captured as metadata,
rather than in code. This enables reuse and quick implementation for any

Using the SID in OSS/BSS Integration

Page 11 of 16
11

change. Without this capability, you would have to write complex if-then-else
coding that is not reusable either as custom code in your ESB or in your BPM.
Either way this logic is not captured in metadata with the other metadata of the
SID, even though it is metadata that is closely tied to the SID.

For example, suppose that even though a triple play order might be for all three
services, the implementation might require that orders be routed to different data
sources depending on the service. In the backend, the broadband order might go
to one data source, the VOIP order might go to another data source, and the
IPTV order might go to yet a third data source as shown in the following figure.

SubscriptionOrder
is routed depending
on type of order

SubscriptionOrder

SubscriptionOrder

SubscriptionOrder

Figure 8: Model-based Semantic Data Routing

This routing is based on the semantics of the model, in this case most likely
driven off of the kinds of products that are being ordered, which are already
understood and captured in the SID.

Model-Based Error Management to Handle
Inaccurate Input
Implementation tools must provide data validation to avoid sending inaccurate
data into the system that could corrupt data sources and databases. Schemas
already provide some level of validation for data input errors to avoid such
errors as accepting strings when numerical values are required, for example.

Most organizations have written custom error handling systems in an attempt to
lessen the labor involved in error handling. However, these are often project
based and not for the enterprise as a whole. Also, any effort spent on an
enterprise-wide error handling system is not captured in metadata for easy re-use
across projects.

More sophisticated model-based error management would return informative
messages and reject bad input or perhaps even correct some input errors. Model-
based error management should not end on the first failure but should evaluate

Using the SID in OSS/BSS Integration

Page 12 of 16
12

the whole message regardless of failures. XSLT alone cannot provide this
sophisticated evaluation and thus must be “overridden” with custom error
handling code to provide a more complete analysis.

Secondly, when an error occurs in model-based error management, the returned
response should be declarative and rich in details so that the Business Process
Management application or other receiver of the response can respond
accurately. Current technologies such as XSLT return only cryptic error codes
with little detail, requiring analysts to spend significant labor interpreting the
error code and determining the cause of the error.

A model-based error management approach enables analysts to describe an error
response for a rule, such as with DataXtend SI’s tools as shown in the following
figure.

Figure 9: Model-based Error Management

Recall this rule (established on page 10) required a subscription to both
broadband service and VOIP if a subscriber requested VOIP service. Error
messages could be as detailed as necessary and can include variables that are
interpreted at runtime to greatly enhance interpretation after an error has
occurred. In DataXtend SI’s tools, if this rule evaluates as false at runtime, this
message gets added to a RulesResults list (shown in the following figure) which
can be interpreted by an API’s operation.

Using the SID in OSS/BSS Integration

Page 13 of 16
13

 Figure 10: RulesResults Contains the Error Messages

Impact Analysis to Manage Change
As systems become larger and more complex, impact analysis provides
techniques and tools to predict and control the effects of software changes. You
need to know what parts of the implementation affect each other and how.
Implementation tools should be able to provide analysis on any SID and vendor
entity, including customized features.

The tools should not only show where a specific entity is used in other schemas
and so on, but they should also show how the entity is used by providing a clear
understanding of the operations that use the entity. This includes all operations
no matter where they are in the system, and therefore indicates which operations
probably have to be retested when this change is made.

For example, the following DataXtend SI report shows where changes and
testing would be required if changes were made to the customerName
computed attribute.

Figure 11: A Summary of the Impact of Changing customerName

From this table you can see that changes to customerName will affect 1 class, 3
other computed attributes, 1 domain schema, and so on. The actual class,

Using the SID in OSS/BSS Integration

Page 14 of 16
14

computed attributes, and other entities affected are available in a detailed report
such as that shown in the following figure.

Figure 12: Some Details of an Impact Analysis

This illustrates a partial list of affected entities indicating the detailed affects for
each. For example, the Customer class of the SIDCommon model is affected
directly (1 step) because it owns the attribute customerName. For another
example, the computed attribute CustomerAffected is 2 steps away from
customerName because it uses the Customer class, which in turn owns
customerName. Impact of a change is manageable out to any level in all the
application APIs.

Useful impact analysis tools and reports can not only help assess the time and
effort needed for a change, they can also provide help in deciding between
alternate approaches to a change or fix to the system.

Conclusions
The TM Forum SID model will help telecommunications providers simplify
OSS/BSS integrations by providing a common semantic model for mapping and
transforming data. However, implementation tools must provide the following
features and benefits for model-based implementations:

⇒ Complex data mapping and transformation to and from the SID
Graphically map attributes between the common model and other message
formats, with the ability to define custom source expressions and computed
attributes for data transformation where needed.

⇒ Data consistency and validation not provided via XML
Define rules for validity constraints using graphical expressions, without
resorting to custom code.

⇒ Content-based data routing (semantic routing)
Define rules in the implementation that evaluate data at runtime and build
the appropriate message for the appropriate application interfaces.

Using the SID in OSS/BSS Integration

Page 15 of 16
15

⇒ Input error management
Capability to model errors and detailed response documents which will
enable organizations to model and define appropriate recovery paths,
providing more satisfying and reliable user experiences.

⇒ Impact analysis of changes
Provide analysis of the impact of modifications that help manage the costs
of change over the integration lifecycle.

About Progress Software Corporation

Progress Software Corporation (Nasdaq: PRGS) provides application
infrastructure software for the development, deployment, integration and
management of business applications. Our goal is to maximize the benefits of
information technology while minimizing its complexity and total cost of
ownership. Progress can be reached at www.progress.com or +1-781-280-4000.

w w w . p r o g r e s s . c o m / d a t a x t e n d

Worldwide and North American Headquarters
Progress Software, 14 Oak Park, Bedford, MA 01730 USA Tel: +1 781 280 4000

UK and Northern Ireland
Progress Software, 210 Bath Road, Slough, Berkshire, SL1 3XE England Tel: +44 1753 216 300

Central Europe
Progress Software, Konrad-Adenauer-Str. 13, 50996 Köln, Germany Tel: +49 6171 981 127

© 2006 Progress Software Corporation. All rights reserved. Progress and DataXtend are trademarks or registered trademarks of Progress Software
Corporation, or any of its affiliates or subsidiaries, in the U.S. and other countries. Any other trademarks or service marks contained herein are the
property of their respective owners. Specifications subject to change without notice. Visit www.progress.com for more information.

Using the SID in OSS/BSS Integration

Page 16 of 16
16

	Why Use the TM Forum’s SID?
	A Triple Play Implementation Example
	Complex Data Mapping Between the SID and Other Systems
	Model-Based Data Consistency Based on Business Rules
	Model-Based Semantic Data Routing
	Model-Based Error Management to Handle Inaccurate Input
	Impact Analysis to Manage Change
	Conclusions

